

## **Content Disclaimer**

The material contained within this document/presentation is not intended to replace the services and/or medical advice of a licensed health care practitioner, nor is it meant to encourage diagnosis and treatment of disease. It is for educational purposes only. Kurt N. Woeller, D.O. (or associates) does not accept legal responsibility for any problems arising from experimentation with the information described herein. Any application of suggestions set forth in the following portions of this document/presentation is at the reader's discretion and sole risk. Implementation or experimentation with any supplements, herbs, dietary changes, medications, and/or lifestyle changes, etc., is done so at your sole risk and responsibility and should be discussed with your (or your child's) personal physician first.

AUTESM INT

## **Lecture Overview**

- Organic Acids Testing (OAT)
- The role of the OAT in candida assessment
- The role of the OAT in clostridia assessment
- The role of the OAT in oxalate assessment
- Certain neurotransmitter imbalances
- Indicators of other problems vitamin deficiencies, fatty acid oxidation, etc.
- Mitochondrial dysfunction assessment

```
AUTESM IOT
```



## **Support Documents for Module #3**

- The Clinical Significance of the Organic Acids Test (marker interpretation handout) - pdf
- Sample OAT (pdf)
- OAT Quick Assessment Guide of the Most Commonly Seen Markers in Autism (*pdf*)
- Mitochondrial Lab Assessment at a Glance (pdf)
- Mitochondrial Cocktail Options (pdf)
- Lecture slides (pdf)

AUTESM IOT

• Lecture slides - note taking (pdf)











| Ś    |                          | Organic Aci                              | ds Te | st - | Nutr    | itional and Metabolic Profile             |  |  |
|------|--------------------------|------------------------------------------|-------|------|---------|-------------------------------------------|--|--|
| leta | bolic Markers in Urine   | Reference Range<br>(mmol/mol creatinine) |       | 9    | Patient | Reference Population - Males Under Age 13 |  |  |
| In   | testinal Microbial Overg | rowth                                    |       |      |         |                                           |  |  |
| eas  | t and Fungal Markers     |                                          |       |      |         |                                           |  |  |
| 1    | Citramalic               | 5                                        | 5.0   |      | 4.4     |                                           |  |  |
| 2    | 5-Hydroxymethyl-2-furoic | ≤                                        | 28    |      | 1.6     | -08                                       |  |  |
| 3    | 3-Oxoglutaric            | S                                        | 0.46  |      | 0       |                                           |  |  |
| 4    | Furan-2,5-dicarboxylic   | s                                        | 18    |      | 2.2     |                                           |  |  |
| 5    | Furancarbonylglycine     | s                                        | 3.1   |      | 0.15    |                                           |  |  |
| 6    | Tartaric                 | s                                        | 6.5   |      | 1.3     | - *                                       |  |  |
| 7    | Arabinose                | ≤                                        | 50    | н    | 93      | (83)                                      |  |  |
| 8    | Carboxycitric            | ≤                                        | 25    | н    | 68      |                                           |  |  |
| 9    | Tricarballylic           | 5                                        | 1.3   |      | 0.08    | 100                                       |  |  |







|                      |                                                      | Page 2           | - 0x                   | alate             | e Metabo | olites | ** |
|----------------------|------------------------------------------------------|------------------|------------------------|-------------------|----------|--------|----|
| 07<br>19<br>20<br>21 | calate Metabolites<br>Glyceric<br>Glycolic<br>Oxalic | 0.74<br>27<br>35 | - 13<br>- 221<br>- 185 | 2.4<br>120<br>110 |          |        |    |
| AUT                  | BERY 101                                             |                  |                        |                   |          |        | -  |



| G  | lycolytic Cycle Metabolite | \$           |     |        |    |      |      |
|----|----------------------------|--------------|-----|--------|----|------|------|
| 22 | Lactic                     | 2.6          |     | 48     |    | 11   |      |
| 23 | Pyruvic                    | 0.32         |     | 8.8    |    | 4.2  | KÝ - |
| М  | itochondrial Markers - Kre | bs Cycle Me  | ab  | olites |    |      |      |
|    |                            |              |     |        |    |      |      |
| 24 | Succinic                   |              | 4   | 23     |    | 5.2  |      |
| 25 | Fumaric                    |              | VI. | 1.8    |    | 0.25 |      |
| 26 | Malic                      |              | ¥1  | 2.3    |    | 1.1  |      |
| 27 | 2-Oxoglutaric              |              | 5   | 96     |    | 27   |      |
| 28 | Aconitic                   | 9.8          | ie. | 39     | L. | 5.6  | \$0  |
| 29 | Citric                     |              | 5   | 597    |    | 335  |      |
| N  | litochondrial Markers - An | nino Acid Me | ab  | olites |    |      |      |
|    |                            |              |     |        |    |      |      |
| 30 | 3-Methylglutaric           | 0.01         |     | 0.97   |    | 0.18 |      |
| 31 | 3-Hydroxyglutaric          |              | \$  | 16     |    | 0    |      |
| 32 | 3-Methylglutaconic         |              | <   | 6.9    |    | 1.3  |      |





| Py | rimidine Metabolites - Fo | late Metaboli | sm | E.   |      |      |
|----|---------------------------|---------------|----|------|------|------|
| 40 | Uracil                    |               | 5  | 16   | 6.5  |      |
| 41 | Thymine                   |               | 5  | 0.91 | 0.21 |      |
| Ke | tone and Fatty Acid Oxid  | lation        |    |      |      |      |
| 42 | 3-Hydroxybutyric          |               | 5  | 4.8  | 0.97 |      |
| 43 | Acetoacetic               |               | 5  | 10   | 0.36 | k)>  |
| 44 | 4-Hydroxybutyric          |               | ś  | 4.7  | 0.91 |      |
| 45 | Ethylmalonic              | 0.06          |    | 4.8  | 1.9  |      |
| 46 | Methylsuccinic            |               | 5  | 4.0  | 0.88 |      |
| 47 | Adipic                    | 0.19          | -  | 6.5  | 2.2  |      |
| 48 | Suberic                   |               | 5  | 7.0  | 2.4  |      |
| 49 | Sebacic                   |               | 5  | 0.61 | 0.16 | \$10 |



| Mitae | alo P12                               |    |   |      |   |      |     |      |    |   |  |
|-------|---------------------------------------|----|---|------|---|------|-----|------|----|---|--|
| 50    | Methylmalonic                         |    | ≤ | 5.2  |   | 1.1  | -   |      |    |   |  |
| Vitar | nin B6                                |    |   |      |   |      |     | ~    |    |   |  |
| 51    | Pyridoxic (B6)                        |    | ≤ | 53   |   | 2.4  | 24  |      |    | _ |  |
| Vitar | nin B5                                |    |   |      |   |      |     |      |    |   |  |
| 52    | Pantothenic (B5)                      |    | ≤ | 14   |   | 4.1  | _   | - <  |    |   |  |
| Vitar | nin B2 (Riboflavin)                   |    |   |      |   |      |     |      |    |   |  |
| 53    | Glutaric •                            |    | ≤ | 1.4  | н | 1.7  |     |      | 7> |   |  |
| Vitar | nin C                                 |    |   |      |   |      |     |      |    |   |  |
| 54    | Ascorbic                              | 10 | - | 200  | L | 5.0  | 5.0 |      |    |   |  |
| Vitar | nin Q10 (CoQ10)                       |    |   |      |   |      |     |      |    |   |  |
| 55    | 3-Hydroxy-3-methylglutaric *          |    | ≤ | 88   |   | 14   | _   |      |    | - |  |
| Gluta | athione Precursor and Chelating Agent |    |   |      |   |      |     |      |    |   |  |
| 56    | N-Acetylcysteine (NAC)                |    | 5 | 0.34 |   | 0.08 | _   | - 00 |    | _ |  |
| Bioti | n (Vitamin H)                         |    |   |      |   |      |     |      |    |   |  |
| 67    | Methylcitric                          |    | 5 | 5.7  |   | 1.6  |     |      | è  | _ |  |







| Ar | nino Acid Metabolites  |       |                                                   |       |       |      |
|----|------------------------|-------|---------------------------------------------------|-------|-------|------|
| 62 | 2-Hydroxyisovaleric    |       | 5                                                 | 0.55  | 0     | 400- |
| 63 | 2-Oxoisovaleric        |       | 5                                                 | 2.5   | 0     |      |
| 64 | 3-Methyl-2-oxovaleric  |       | 5                                                 | 1.1   | 0     |      |
| 65 | 2-Hydroxyisocaproic    |       | \$                                                | 0.68  | 0.04  |      |
| 66 | 2-Oxoisocaproic        |       | </td <td>0.46</td> <td>0.12</td> <td>- 0&gt;</td> | 0.46  | 0.12  | - 0> |
| 67 | 2-Oxo-4-methiolbutyric |       | \$                                                | 0.33  | 0.01  |      |
| 68 | Mandelic               |       | ≤                                                 | 0.30  | 0     |      |
| 69 | Phenyilactic           |       | $\leq$                                            | 0.19  | 0.02  |      |
| 70 | Phenylpyruvic          |       | ≤                                                 | 4.0   | 0.07  |      |
| 71 | Homogentisic           |       | 4                                                 | 0.61  | 0.01  | (b)  |
| 72 | 4-Hydroxyphenyllactic  | 0.05  |                                                   | 1.1   | 0.26  |      |
| 73 | N-Acetylaspartic       |       | ≤                                                 | 5.9   | 2.1   |      |
| 74 | Malonic                |       | \$                                                | 18    | 12    |      |
| Mi | neral Metabolism       |       |                                                   |       |       |      |
| 75 | Phosphoric             | 1 000 |                                                   | 7 300 | 1 793 |      |













































































| Т         | he Great Plains             | Laborat                    | 01  | y, h       | nc |                  |                                             |
|-----------|-----------------------------|----------------------------|-----|------------|----|------------------|---------------------------------------------|
| Re        | quisition #:<br>tient Name: |                            |     |            |    |                  | Physician Name:<br>Date of Collection:      |
| Met       | tabolic Markers in Urine    | Reference<br>(mmol/mol cre | Ran | ge<br>ine) | 1  | Patient<br>Value | Reference Population - Females Under Age 13 |
| C         | xalate Metabolites          | -                          |     |            |    |                  |                                             |
| 18        | Glyceric                    | 0.71                       |     | 9.5        | н  | 18               |                                             |
| 19        | Glycolic                    | 20                         |     | 202        |    | 100              |                                             |
| 20        | Oxalic                      | 15                         | ,   | 174        | н  | 483              | 483                                         |
| G         | Slycolytic Cycle Metabolite | s                          |     |            |    |                  |                                             |
| 21        | Lactic                      | 0.18                       |     | 44         | н  | 301              | <b></b> 30)                                 |
| 22        | Pyruvic                     | 0.88                       |     | 9.1        |    | 9.0              |                                             |
| 23        | 2-Hydroxybutyric            |                            | ≤   | 2.2        | н  | 3.7              | <b>→</b> 3⊅                                 |
| AL<br>REG | COVERY 101                  |                            |     |            |    |                  |                                             |















## **Common Complaints and Observations**

- Sandy and grainy stools
- Bladder irritability
- Pain on urination holding penis or groin region
- Eye pain (eye poking in children)
- Body aches, burning feeling in muscles
- Moodiness, irritability, and aggressive behavior often seen in autism.
- Generalized pain that likely manifests as aberrant behavior.

```
RECOVERY 101
```





| O.L | Homovanillic (HVA)                   |      | ¥1 | 14  |   | 12   |       |
|-----|--------------------------------------|------|----|-----|---|------|-------|
| 33  | VanillyImandelic (VMA)               | 0.87 |    | 5.9 |   | 4.4  |       |
| 34  | HVA / VMA Ratio                      | 0.12 | -  | 3.0 |   | 2.9  |       |
| 35  | 5-Hydroxyindoleacetic (5-HIAA)       |      | ş  | 7.7 |   | 3.7  |       |
| 36  | Quinolinic                           | 0.63 |    | 6.7 | н | 7.7  |       |
| 37  | Kynurenic                            |      | ×1 | 4.1 |   | 0.10 |       |
| 38  | Quinolinic / 5-HIAA Ratio            | 0.04 |    | 2.2 |   | 2.1  |       |
| 32  | Homovanillic (HVA)                   |      | ≤  | 14  |   | 7.5  |       |
| 33  | (dopamine)<br>Vanillyimandelic (VMA) | 0.87 | -  | 5.9 |   | 3.5  |       |
| 34  | HVA / VMA Ratio                      | 0.12 |    | 3.0 |   | 2.1  |       |
| 35  | 5-Hydroxyindoleacetic (5-HIAA)       |      | ≦  | 7.7 |   | 3.6  |       |
|     | Quinolinic                           | 0.63 | •  | 6.7 | н | 14   | → (4) |
| 36  | Kynuranic                            |      | ≤  | 4.1 |   | 2.4  |       |
| 37  | righterenie                          |      |    |     |   |      |       |













| Бų,  |                  | E, F   |     |      |     |                                         |
|------|------------------|--------|-----|------|-----|-----------------------------------------|
|      |                  | Krebs  | Cy  | ycl  | e   | Metabolites                             |
| ĸ    | rebs Cycle Metab | olites |     |      |     |                                         |
| 24   | Succinic         |        | ≤ 1 | 5 H  | 105 |                                         |
| 25   | Fumaric          | 0.04   | • 1 | .3   | Î   | Greater than 50, points to a            |
| 26   | Malic            |        | ≦ 2 | .2 H |     | more significant<br>mitochondrial issue |
| 27   | 2-Oxoglutaric    |        | ≤ 8 | 1 H  |     | 129                                     |
| 28   | Aconitic         | 11     | . 3 | 5 H  | 37  | 37                                      |
| 29   | Citric           | 59     | - 4 | 40 H | 841 | <b>8</b> 41>                            |
|      |                  |        |     |      |     |                                         |
| RECO | WERY 101         | ĩ      |     |      |     | +                                       |











# Mitochondrial Disease (Mde) Once thought to be rare, are now considered to be one of the most common metabolic problems in children. Some cases of <u>Mde</u> can occur in autism – usually brought on by genetic mutations or abnormalities in the metabolic mechanism of mitochondrial function.

AUTESM TOT





## Autism-Spectrum Children Can Have Similar Issues Related to Mito. Diseases

One study looking at over 20 autism-spectrum (ASD) kids showed no evidence of mitochondrial disease patterns via muscle biopsy testing, despite these kids having the following:

- Attention, language, and behavior issues
- Seizures
- Poor muscle tone
- Gastrointestinal motility problems

## AUTESM TOT





6. Endogenous toxins from gut pathogens, i.e. clostridia (propionic acid).

AUTESM IOT









## Mitochondrial Dysfunction in Autism – Supplement Therapy

Supplement support and antioxidant therapy can be helpful for mitochondrial issues.

Examples:

- L-Carnitine helps with fatty acid transport
- Thiamine (B1), Pyroxidine (B6), Riboflavin (B2) all support mitochondrial function.
- Antioxidants help to decrease oxidative stress
- 'Mitochondrial Cocktail' combination approach for balanced mitochondrial support.

RECOVERY 101









| K  | etone and Fatty Acid Oxida | tion |      |   |      |      |
|----|----------------------------|------|------|---|------|------|
| 39 | 3-Hydroxybutyric           | 5    | 4.1  | н | 26   |      |
| 40 | Acetoacetic                | ≤    | 10   | н | 38   |      |
| 41 | 4-Hydroxybutyric           | ≤    | 3.4  |   | 0.44 |      |
| 42 | Ethylmalonic               | 5    | 4.6  |   | 4.1  |      |
| 43 | Methylsuccinic             | ≤    | 4.3  |   | 2.4  | 24   |
| 44 | Adipic                     | ś    | 9.7  |   | 2.8  | 28   |
| 45 | Suberic                    | ≤    | 9.5  |   | 6.5  | 6.5  |
| 46 | Sebacic                    | s    | 0.37 | н | 0.46 | 0.46 |

|      | 2                                              | year o                               | ld        | l g | girl   | from China                                 |     |  |  |
|------|------------------------------------------------|--------------------------------------|-----------|-----|--------|--------------------------------------------|-----|--|--|
| Meta | bolic Markers in Urine                         | Reference Rang<br>(mmol/mol creatini | je<br>ne) | F   | atient | Reference Population - Females Under Age 1 | 3   |  |  |
| Ke   | tone and Fatty Acid Ox                         | idation                              |           |     |        |                                            |     |  |  |
| 41   | 3-Hydroxybutyric                               | 5                                    | 4.1       | н   | 257    |                                            | 257 |  |  |
| 42   | Acetoacetic                                    | 5                                    | 10        | н   | 12     |                                            |     |  |  |
| 43   | 4-Hydroxybutyric                               | ≤.                                   | 3.4       |     | 0.94   |                                            |     |  |  |
| 44   | Ethylmalonic                                   | 5                                    | 4.6       | н   | 5.5    | → \$5>                                     |     |  |  |
| 45   | Methylsuccinic                                 | 5                                    | 4.3       | н   | 6.4    |                                            |     |  |  |
| 46   | Adipic                                         | 5                                    | 9.7       | н   | 187    |                                            | 187 |  |  |
| 47   | Suberic                                        | 5                                    | 9.5       | н   | 349    |                                            | 349 |  |  |
| 48   | Sebacic                                        | 5                                    | 0.37      | н   | 1 185  |                                            | 185 |  |  |
|      | High dose Medium Chain Triglycerides (MCT Oil) |                                      |           |     |        |                                            |     |  |  |
| REC  | OVERY 101                                      |                                      |           |     |        |                                            | ÷   |  |  |



## Vitamin Indicators Indirect: • Methylmalonic acid - vitamin B-12 • Methylcitric acid - biotin • Glutaric and Succinic acid - indicators of riboflavin and coenzyme Q-10 deficiency. Direct: • Ascorbic acid - vitamin C • Pantothenic acid - B vitamin • Pyridoxic acid - metabolite of vitamin B-6

## AUTESM TOT









## Most Common Nutritional Marker Imbalances

1. Low vitamin C (ascorbic acid)

- 2. Low or low normal vitamin B6 (pyridoxic acid)
- 3. High glutaric acid (vitamin B2)
- 4. High B5 (pantothenic acid)
- 5. Low to low normal N-acetyl-cysteine (NAC)
- 6. High CoQ10 marker
- 7. High B12 (methylmalonic acid) + High Methylcitric (biotin) – rarely seen

## AUTESM TOT

| Requisition #:             |                                          |                  | Physician Name:                             |
|----------------------------|------------------------------------------|------------------|---------------------------------------------|
| Patient Name:              |                                          |                  | Date of Collection:                         |
| letabolic Markers in Urine | Reference Range<br>(mmol/mol creatinine) | Patient<br>Value | Reference Population - Females Under Age 13 |
| Pyrimidine Metabolites     |                                          |                  |                                             |
| 37 Uracil                  | ≤ 19                                     | 16               |                                             |
| 38 Thymine                 | 0.02 - 0.88                              | 0.44             |                                             |
| Bone Metabolites           |                                          |                  |                                             |
| 2 Phosphoric               | ≤ 10769                                  | 8450             |                                             |
|                            |                                          |                  |                                             |





| Rei       | uisition #:                    |                            |                   |                  | Physician Name:                             |
|-----------|--------------------------------|----------------------------|-------------------|------------------|---------------------------------------------|
| Pat       | ient Name:                     |                            |                   |                  | Date of Collection:                         |
| Met       | abolic Markers in Urine        | Reference<br>(mmol/mol cre | Range<br>atinine) | Patient<br>Value | Reference Population - Females Under Age 13 |
| N         | utritional Markers             |                            |                   |                  |                                             |
| Bio<br>54 | in (Vitamin H)<br>Methylcitric |                            | ≤ 5.5             | 1.4              |                                             |
| In        | dicators of Detoxification     | on                         |                   |                  |                                             |
| 55        | Pyroglutamic                   | 7.0                        | - 63              | 56               |                                             |
| 56        | Orotic                         |                            | ≤ 0.88            | 0.81             |                                             |
| 57        | 2-Hydroxyhippuric              |                            | ≤ 1.2             | H 1.6            |                                             |



| 58 2-Hydroxyisovaleric    |      | ≤                                                         | 1.2  |   | 0.85 | - \$85 |
|---------------------------|------|-----------------------------------------------------------|------|---|------|--------|
| 59 2-Oxolsovaleric        | 0.03 |                                                           | 2.4  |   | 0.76 | 0.76   |
| 60 3-Methyl-2-oxovaleric  |      | 1                                                         | 1.1  |   | 0.10 | -0.10  |
| 61 2-Hydroxyisocaproic    |      | ¥1                                                        | 0.70 |   | 0.20 | 0.20   |
| 62 2-Oxoisocaproic        |      | < i                                                       | 0.54 |   | 0.09 | 0.09   |
| 63 2-Oxo-4-methiolbutyric |      | \$                                                        | 0.30 |   | 0.11 | () 1D  |
| 64 Mandelic               |      | N                                                         | 0.28 |   | 0.17 |        |
| 65 Phenyllactic           |      | </td <td>0.27</td> <td></td> <td>0.02</td> <td>-0.02</td> | 0.27 |   | 0.02 | -0.02  |
| 66 Phenylpyruvic          | 0.45 |                                                           | 2.3  |   | 0.62 |        |
| 67 Homogentisic           |      | 5                                                         | 0.51 |   | 0.09 | 0.09   |
| 68 4-Hydroxyphenyllactic  | 0.04 | e l                                                       | 1.1  |   | 0.74 | 0.74   |
| 69 N-Acetylaspartic       |      | 5                                                         | 8.1  |   | 2.3  | - 23   |
| 70 Malonic                |      | 4                                                         | 12   |   | 3.5  | 35     |
| 71 3-Methylglutaric       | 0.07 |                                                           | 0.95 | н | 1.8  |        |







## Prioritization of OAT Findings (general recommendations) If any clostridia marker is high this takes priority regarding treatment. If arabinose, or other yeast markers are high, need to correlate to clinical picture. If oxalate is high need to correlate to clinical picture. NOTE: remember, these 3 areas often greatly influence other markers on the OAT.

### Prioritization of OAT Findings (general recommendations)

- If one or more of the first 3 sections are positive (yeast, clostridia, oxalate) and other imbalances are seen then additional supplement therapy can be worthwhile:
  - If one specific fatty acid marker is significantly high, or multiple are high using L-carnitine is worthwhile.
  - If multiple mitochondrial markers are high consider MitoSpectra or just L-Carnitine.
  - If HVA and/or HVA/VMA ratio are high cross check to clostridia markers.

AUTESM IOT

## Prioritization of OAT Findings (general recommendations)

## 4.(continued):

- If 5-HIAA is low to low normal consider 50mg to 100mg of 5-HTP daily for serotonin support.
- If Quinolinic Acid is high use at least 500mg of Niacinamide as a priority supplement.
- If HVA and/or HVA/VMA ratio high cross check to clostridia markers.
- If Uracil is high consider additional L-Methyl-Folate supplementation, i.e. 500mcg to 1000mcg daily.
- Address vitamin deficiencies individually as needed
- Low phosphoric consider Vitamin D testing or supplementation with Vitamin D3, i.e. 1000IU/25Ibs body weight (approximately).

## AUTESM IOT



